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Abstract, In this paper, we present a quantitative analysis of the robustness of a reduced-order
pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose or-
der of the real process is higher than that of the model used in the controller design. The result of sta-
bility analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-
loop real system via the reduced-otder state-space self-tuner is BIBO stable in the presence of unmod-

elled dynamics.
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1 Introduction

The problem of robustness of an adaptive control system has recently been studied by many
authorst!~), This is because the development of adaptive controllers for adaptive control systems
is based on the assumption that the model used in the controller design is an accurate representa-
tion of the real process; however, the degree of most real processes is often higher than that of
the model used in practice. As a result, a stability problem may occur due to a mismatch of the
orders of the modeled processes and the real processestil, Hence, a study of robust stability of the
utilized algorithms for the controller design is necessary.

During the last decade, vast amount of research was devoted to quantitative analysis of the
robustness of self-adaptive algorithms such as the development of conic sector theory and normai-
ized system scheme(**), In reference [4], the normalized parameter estimation approach com-
bined with a dead-zone method in which the modelling errors are treated as a bounded disturbance
and utilized as a parameter adaptation stopping criterion to gmantee global stability was devel-
oped. In contrast, in reference (5], the robust stability of a muitivariable adaptive controller
based on a factorization approach was established » wWhich is useful for the robust stability analysis
of adaptive algorithms.

In this paper, we are concerned with the robust stability of the multivariable adaptive con-
trol system via the reduced-order state-space self-tuning controller developed in reference [6]
Our approach to quantitative analysis of the robust stability of the adaptive contro! system(%) can

Manuscript recelvod Sept. 3, 1992, revised May. 22, 1993.



278 CONTROL THEORY AND APPLICATIONS Vol. 11

be described as follows. First, we utilize the normalized parameter estimation scheme(!) to carry
out the parameter estimation with the presence of unmodelled dynamics. Then, we use the ana-
Iytical method developed in reference [§] to resolve the robust stability of the adaptive control
system via the reduced-order state-space self-tuner{*), Finally, we determine the bound of the
modelling error with which the self-tuner can be tolerated.
2 System Description

In this paper, both of the plant and the reduced-order model are assumed controllable and
observable. ]

Consider the following m-input-output block observer-type discrete-time stochastic linear

plant;

(k) = A’z (R — 1) + Bru(k — 1) + Kre* (R — 1), (la)

y(k) = C;z7 (k) + e* (}) (1b)
where

- Aol I- 0- see o- zo.l (k

—_ « la e 0. g

e P = [P
. A' 0- o- see 0 :(k

€T = [I. 0n O *** 0uJuxers
u(k) €R" and y(}) € R" are input and output vectors, respectively; block elements Ay, B.€
R*X%(i==1,2,++,7) are constant matrices, z2 () ER*(i=1,2,+,7) ¢* (k) ER" is the inno-
vation process which is a white noise process with zero mean and covariance R € R*** and

sup fle*(B) || <o, (2)
0<i<oo
with 6,>0, K} €R™** is the Kalman gain matrix.
At (z™)) = Io+ Agz™t + Apz=t 4 oo 4+ Az, (3a)
B.(z-l) = B'lz-l + B-zz" 4 oo Bz, : (3b)
D*(z7!) = Ia 4+ Dyz™! + Dpz=2 4 «« 4 D 2™, +(3c)
and Dy = As+ Kuy §=1,2,%,r, (3d)

It is observed from (3d) that the Kalman gain K. can be directly computed from the estimated
parameters D, and A, An alternate representation of the original system in (1) can be described
as follows,
y(k) = 6°TO* (k) 4 e* (B), (4a)
where
§°T = [A.,,"-,A.,,B.l,m.B.,,D.,,-", .], (4b)
O (k) = [— ik — 1)yeoey — gak — 1)ory — yalk — #),8,(k — 1), 0o,
Ua(k = 1) yoe stim(k — 1) yef (B — 1), 102 (B — 1), 62 (k — )T (dc)
The 8° in (4) is the parameter matrix of the original system. For a reduce-order controller de-
sign, a reduced-order observable model is required as
7 (k) = Az, (k — 1) + Bu(t — 1) + Ke(k — 1), (52)
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y(k) = Clz, (k) + e(}), (5b)
where
—dAa Ia 0, < O Ka a(k
e P k= L = [0
——Au 0, 04 <= O 10))
CT = [la 00 0a ** 0. )urens
where a<(r, and e(k) is the innovation process of the model,
The equivalent observable ARMAX model of (5) is
ACz7)y (k) = B(z"Mu(k) + D(z"e(d), (6)
The alternate form of the model in (6) can also be rewritten as follows
y(k) = 6"0(k) + e(h), (7a)
where
6 = [A..,---,A_.B.l,---, ) NI _], (7b)

O(k) = [_' ’l(k - l)""'v - ’-(k = 1)y, — ’-(k - l)o"l(k — 1) e,
Ua(l = 1) 000 jua(l — ), 60 (k — 1),000 63 (k — 1), 000,02 (k — D] (7e)
where 4 is the parameter matrix of the reduced-order model. The e(k) in (6) can be decompased
into two terms,

e(k) = &(k) + e* (L), (8a)
where e (k) is the innovation process of the original system and
ER) = 6°TP (k) — 6TO(k), (8b)

In reference (6], it was assumed that (k) in (8) is a zero-mean stochastic sequence and statisti-
cally independent of e* (k). In this paper, the assumption in reference (6] is relaxed so that (k)
is not a zero-mean stochastic sequence and can be represented as
D(z~1)e(k) = 46" 40(0), (9a)
where
st = {[A.+u'“n4¢v3-+n"' w1 Daat1s %" 1 Do Juxsatr—nrs T > %, (9>
0, r=a,
A0(R) = [— 5 1(k — 2 — 1),000, — go(k — & — 1), e0e, — Yalk — 7)ym(k— 8 — 1),ee,
da(k =8 — 1), ua(k—r)yef (R — 2 — 1),0er,e8(k — 8 — 1),00 02 (k — » %
' (9¢)
Then, from (9a), it is reasonable to make the following assumption ;
Assumption 1 Assume that there exists a 4>>0, such that for k=0, the umwellw error
satisfies the constraint,
Tew | <wllsomr, (10a)
and further, we have
e | <ullo i, : (10b)
where @° (k) is related to the plant input and output sequences. Eq. (10b) shows that the mod-
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elling error (k) is relatively bounded; therefore, x can be considered a measure of the relative
magnitude of the modelling error. Note our primary interest is to find a relative pound of‘the
modelling error with which the adaptive controller can be tolerated.

3 Normalized Parameter Estimation
In order to develop an adaptive control law, we shall first introduce the parameter estimation
algorithm for the model in (6). .
Defining the parameter estimation error, (k) = (k) —8, the estimated output &) =8
—1)d(k) , and the innovation process, e(k) =y (&) — k).
The reduced-order model equation to be estimated is written as follows:
y(k) = &k — DEE) + &) (11a)
8k — 1) = [AarewssAmrBareee v By Darers 1 D] (11v)
By = [— pk— Dy = galb = Doene = gu(t — )0k — 1)y
ua(k — 1)y ruall — 2),5(k — 1), ek — 1) yee s2alt — ] (110)
As far as the parameter identification is concerned , in the case of pounded disturbances, the
dead zone technique is utilized to prevent parameter drift. On the other hand, in the case of un-
modelled dynamics, the identification error may grow without bound; hence, the dead zone tech-
nique of the bounded distrurbances can not be applied directly. This leads to the use of the param-
eter normalization technique which allows unmodelied dynamics to be treated as bounded distur-
pances. In this paper, a normalized parameter estimation schemel4] is used to estimate the param-
eter Ai, Bay and Dy in (%).
The normalized variables of the process are defined 2s

_y® 0B gy = BB _ 40(h) _ &)

ra =12, em =55 ¥® =@y s = S5y e = 550 (128)

(k) = max( max |& OINAD : (12b)
1K

where 7, is a pre-selected positive constant, and @7 is the i-th clement of ®°. Using these nor-

malized variables, the model in (7a) can be rewritten as follows:

y) = &or (k) + 8%, (13a)
where
s = & j('k; ®] (13b)

It can be shown in the following lemma that the scqi:enoe {(£#®)} in (13b) is bounded.

Lemma 1 The normalized sequence of the perturbed signals {& ()} in (13b) is
bounded.

Proof

. pllse@® i, L@l _ 2
1 rw ) <tle®l Leidl < s — ol 43 (130)

we are able to estimate an upper bound of £ (k).
Define
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4y = [Aolv"' H-L]fo
where 4,>0 is an estimate of an upper bound of ||, §==1,+,m. Also, define 4, =
l 41 , then 4 is an estimate of an upper bound of f| (k) | .
" Based on the identification algorithm in {4], we can obtain the convergence properties of
the posterior estimation error and of the parameters. A posterior estimation error is defined as
HOYAY (O XX KO LON (14)
Lemma 2 According to the esimation algorithm in [4], we have,
i) || 8¢&) || is uniformly bounded, which implies that there exists a constant M>0, and
GRYEQ={0, || 0]l <M}, where O is a closed subset of R>=;
i) Um{ | 8¢k) [ *— I 8C—1) || ]=0,
iii) Li::[ 8k || — Il 8Ck—a) || J=0, A is a limited positive integer;
iv) There exists a positive integer K, such that
lee) | <23max| o) |l,n), ask> K.
This proof can be found in reference [4].
4 Multivariable State-Space Self-Tuning Controller
Once the system parameters §(k) are obtained, t.he' adapiive control law can be determined
as follows{#],
The estimated 2,(k) with 8(k) can be written as

2,(0) = A B2,k — 1) + Bk)uk — 1) + R, (it — 1), (15a)
y(k) = CT2,(k) + #(R), (15b)

where A,(k), B.(k) and R,(k) are the kth step estimation of 4,, B, and K,, respectively.

Assumption 2 Let G(é)=[-3:“‘§.-.3:"’ bo oo s A B,y B,]. Assume that there exists a posi-
tive real constant y,>0 such that |detG(8) | =>7.. Then; the state-feedback control law is given
by

' u(k) = Hr(k) — FIT3,(%), (16a)
where r (k) €R*" is a reference input vector with an input gain matrix H,& R"%", FTEC R
Foi=ay— Agy 1= 1,)oen, (16d)
where A, comes from the controllable model of (15), and
&) = Daa—t= T[w.~- P, (16¢)
=0 =1
det(Um — A — BFIT)] = J[det(ata — P). (16d)
=1

5 Extended Dynamic System Description

In this section, we reformulate the adaptive control system developed in previous sections in-
to a composite dynamic system which is suitable for robust stability analysis using the theory de-
veloped in the next section.

First, let

ZT(x) = [0°T(h),31(D)], : an
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where @°T (k) and I (k) are defined in (4c) and (15), respectively. Next, we rewrite
¢ (k)

o (k + 1) = SO* (}) + 6,(%) + A.(}) + 9,2 (B, (18a)
where
) 0 0 o 0]
Tate=1) 0 0 - 0
S§= 0 L=ty O 0}, (18b)
L 0 0 0 =+ 0]
. e Ty —
ﬁ:(k) = [" ’r(k)'o'_r’...’ '."0'}'.---,0."'.0'.""- )U:]! (18¢)
OT(k) = [OF o+ OF ,uT(k), 0T 00, 0F, 07 o+, 0T ], (18d)
d’r' ) = [0':-"' 0T, 08,000, 0T, e°T(2) YOy eee, 0], (18e)

where 0T=[0,++,0]yxa Then, from (15b) and (16a), Eq. (18a) becomes )
O°(k + 1) = SO* (¥) + Dy(R),(E) + D(k)E(k) + Dy(B)e* (k) + D(k¥)r(k), (19a)

where

F—cf — 1] 0] 07
0 0 0 0
Dy = - FT. y D= 0 y Dy= 0 y D= H. . (19b)
0 0 0 0
0 0 I 0
L o Lo ] o] o]

Substituting (16a) into (15a) gives
3.(k + 1) = (A — BADFITIZE) + R(DEE) + B(DHr(E)
= P13, + R(BE®) + B(WH-GY, (20a)
Fy (k) = A(F) — B,(O)FIT., (20b)
and combining the resulting equations (19a) and (20a) yields the composite dynamic equation of
the closed-loop system:

ZG + 1) = Ey(BZ ) + E()e(k) + Es(k)e* (k) + Eq(R)r (k) (21a)
where
[ Dy(#¥)] [D2(2)] Dy ()] [ D(E) 7
By(k) = y By(k) = y By(k) = y B =y, .
W= 1 awml P T L) W= 179 ] B el
(21b)

In the following section, we carry out the robust stability analysis using (21a):
6 The Robustness of Self-Tuning Ad&pﬂve Controller
1n this section, we state two lemmas as follows.
Lemma 3 Coansider the time-varying difference equation
2+ 1) = A@z() + f(,2), z(4) =2 € R, o (222)
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where f(¢,z) is bounded as .
[ ] < G+ a@ =01 + (0, (22b)
&=>0, <4 e 0, and 0 << ry(0) € 1™

Suppose that the zero-input system in (22) of the form

3+ 1) = A@®)z) (23)
is exponentially stable, i.e., there exist some constants a;2>1 and 122a,2>0 such that
I ot | < aaf™ Qo

for any 6,=>0 and t2>¢, where & ¢t, 4) is the state transition matrix of the system in (23).
Then, if the following inequality is satisfied,

0<d <

(1 — a)
—_—_—_Gx ' (25)

we can conclude that

i) z(¢) €&, and in addition, I z2¢0) || Sv(t) as t—+oo, where v(¢) is the output of the
system with the transfer function & (z~V) =a,/(z— (day+ @) , driven by r2(¢).

ii) Whenever r,(¢)E P, and p€[1,00), then z(¢) € P which implies fz@) | +0ast
- 00, ‘

Proof see reference [5).

Lemma 473 * Consider the system
2(¢ + 1) = A()z(t) (26)
which has the following properties, :

a) || 4¢) || is uniformly bounded;

b) There exist 0<e<1, such that

max |4AW [ <1 — <1 forall ¢ tog

¢) sup j| AU+ 1)—AW | is sufficiently small.

where {4 is a positive constant, and A;(A(t)) denotes the jth eigenvalue of the matrix A(¢).
Then, the system is exponentially stable.

In order to show the system in (21a) to be exponentially stable, we proceed through the fol-
fowing steps.

Step 1 Show that Ey(k) satisfies part 2) of Lemma 4.

From Lemma 2-i), we know that [| A(#) || and || B,() || are bounded. From Assump-
tion 2, we know that || FT || and | T. ] are also bounded. Thus, || B(¥) || is bounded.

Step 2 Show that Ey(k) satisfies part b) of Lemma 4.

Since

‘ det(A — By (k)) =det(Al — $)det(A — F1 (k)

=det(Al — &) J[detula — P) @n

r=ry
the roots of det(Al—8) are zero. If we choose P;, i==1,++,m such that det (Al — P;) has no
roots lying outside the circular disk, i e, 0<<|2|<1—e and 0<e <1, then E (k) satisfies
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part b) of Lemma 4.

Step 3 Show that E,(k) satisfies prat ¢) of Lemma 4.

The above fact can obviously be verified from Lemma 2-iii) and Assumption 2.

Based on the results shown in the above three steps, we coclude that By (k) is exponentially
stable. This implies that an association of the a and a, with the exponentially stable B, (k) is evi-
dent. .

Next, we explore the norm bounded property of the forcing terms, E,i(k), Eye* (), and
Ex(k), in (21a) as follows.

By virtue of Lemma 2-i), Assumption 2, Lemma 2-iv), and (2), we have

| E:2Ck) + Eye* (&) + Bor(B) ||
<K e + K lle® | + &5 e ||
L2641 + 2]+ Kb+ Kl v (0 |, (28a)
where K1=é\‘1g” I E2e) || s K¢=°iu<p” | EsCk) || K,=°<s:l£n [l E«CkY || . From (13¢), we
now that 4 3(r—n)m]%+4,/7,is an upper bound of || (k) Il » and 5, is an estimate of an up-
per bound of | 4*(%) || . Thus, if we can choose 2<u[3(r—n)m]%+6,/r, for the estimation
in reference [4], then

WER) + Bie* @) + 20 | <2K[u03¢ — Bk + ST 02y | +£,]
+ Kb+ Kyl () | (28b)
<2KA(3¢ — mmP+ LIz | + 1.]

+ Kl + Kl r () |
Now. comparing (22b) with (28b) yields

= 25— e B

() =0, 1) = 2K, [u(3C — I + Lr, 4 Kot + Ky 1) |

Tren, applying Lemma 3. we have the following main results for the adaptive controller.
Theerem 1 With Assumptions 1 and 2, if the x in (10a) (a measure of the relative mag-
nitude of the medelling error) is bounded as

v 1 i~ a 2K,
I<u< 2K,[3(¢r — m)m A [ q r. ] ’ (29)

21¢ the J, Ia the estimation algorithm{¥ satisfies
- s
0< A< 43¢ — a)m]% + ) (30)

then the adaptively controlled close-loop system via the reduced-order controller is BIBO stable for
2ny initial condition in both the plant and the adaptive controller irrespective of the presence of
unmodelled dynamics.

Remerk T The BIBO stable system has the fgllowing properties,
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1) Z(*) €=, then y(k) €, and ¥ (B €L
@) ||z | <v(r), as k->o00, where v(k) is the output of the system with the transfer
function '

T .| W
GG =z (cdy + a3)’
drivea by r,(}).
jii)
1z | v + [I‘—’G%i‘??-—aﬁ] @Kdir, 4 K8, 1)

where v/ (k) is the output of the system with the transfer function & (z"'), driven by
Kl r® . '

Remark 2 The value TR

1 Fl—a: 21\.16:\ . " . . .
- L Py s J in (29) is obviously a measure of

the robustness of the adaptive controller. It implies that the adaptive controller is 2llowed to te
perturbed by the modeiling error #(¢) satistying the g in (29). For the poie-assignment algorithm
in this paper once we have selected the desired closed-loop polynomial matrix &(4) in (16¢), it
is possible to determine a, and a; 2 priori. As a result, we have the knowledge of the degree of
robust stability for the controller to be designed.

7 Conclusions

This paper has demonstrated that the state-feedback pole-assignment self-tuning controlter(¢i
has a certain stability robustness. As a result, the reduced-order model can be used to design a re-
duced-order self-tuner with suitable conditions and the adaptively controiled closed-loop original
system via the designed reduced-order self-tuner is BIBO stable in the presence of unmodelled dy-
namics.

Acknowledgments This work was supported in part by the US Army Research Cffice, un-
der grant DAAL-03-91-G0106 and NASA Johnson Space Center under grant NAG 9-380.

References

{1] Rohrs, C. E.. Robustness of Adaptive Control Algorithms in the Prescnoe of Unmodclled Dynamics. Proc. of the 21st
IEEE C. D. C., Orlando, FL, 1982

(2] Ortega, R. , Praly, L. and Landan,D.. Robustness of Discrete-Time Dircet Acaptive Contrullers. 1EEE Trans. Automat.
Contr. , 1985, AC-30(12),1178—1187

(3] Cuett, W. R. , Shan, S. L. and Fisher, D. G.. Robustress Analysis of Discrete-Time Adaptive Control Systems Using
Inpat-Output Stability Theory; A Tutorial. 1EE Proc-D, 1988, 135(2),133—141

(4] Quett, W. R. et el.. Stable Discrete-Time Adaptive Contral in the Prescnce of Unmodclled Dynamics. 1EEE Trans. Au-
tomat. Contr. , 1988, AC-33(4);410—415

[5] Ueng, G. W. e al.. Towards a Link Betwoen the Factorization Approach and MIMO Robust Adaptive Contedl. Int. J.
Contrdl, 1890, 52(6),1391—1423

{6 Shich, L. S. et al.. Multivariable State-Space Feedback Self-Tuning Controllers. Stochastic Analysis and Apglications,



286 CONTROL THEQORY AND APPLICATIONS Vol. 11

1985, 3(2),189-212

(7] Goodwin, G. C. et al.. Rapproachement Between Continucus end Discrete Madel Reference Adaptive Control. Automati-
ca, 1988, 22(2),199—207




